基于改进 U2-Net 的小样本病虫害分割算法研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:S64.1 文献标志码:A 文章编号:2096-9902(2025)21-0035-05

Abstract:Asaneficienteconomiccrop,theyieldandqualityofcherrytomatoesareoftenseverelythreatenedbypestsand diseases.Accuratesegmentationofpestanddiseaseareastolocatetheextentofthediseaseisthecoreprerequisiteforearly interventionandprecisepreventionandcontrolofpestsanddiseases.Tosolvetheproblemsofmissddetectionofsmalldisease areas,bluredboundariesandlowsegmentationfiencyintraditionalcherryblossmdiseaseandpestsegmentationthispaper proposesanAtt-Netsegmentationmodelthatintegratesatentionmechanismtoachieveaccuratesegmentationandrecognitionof diseasesandpests.Using the Tomotodisease datasetfortesting,alightweight SimAM wasembeddedinthedecodinglayerof the U2 -NTP model,andtheMSAA mechanism wasusedtooptimizethefeature fusionefect.Finally,aCBMAatentionmodulewas added to the output side of each layer to construct a segmentation model AtU -2 -Net forplant diseases.Finally,it will be comparedquantiativelyandqualitativelywithothermainstreamsegmentationmodelssuchasDeepLabv3,mU-net,etc.Ithas beenverified that AttU 2⋅ -Netcan accurately segment the diseased areas of leaves and fruits,meeting the requirementsfor healthy crop cultivation in the process of planting cherry tomatoes in agriculture.

Keywords: Saint Mary's fruit diseaseand pest infestation; Semantic segmentation; Small sample size; U2. -Net;attention mechanism

在温室或大田作物种植场景中,病虫害的肆虐依然构成了一项极为严峻的挑战[。(剩余5476字)

目录
monitor
客服机器人