基于机器学习的电力系统继电保护策略优化

打开文本图片集
中图分类号:TM77 文献标志码:A 文章编号:2095-2945(2025)26-0155-04
Abstract:Inordertoimprovetheaccuracyandspeedofrelayprotectioninpowersystems,machine learning methodssuch asneuralnetworks,supprtvector machinesandrandom forestsareusedtostudyfault identficationandprotection‘strategy optimization.Troughdatacolectionpreprocessngandmulti-modelfusionanintellintprotectionshemeisdesignedandits performanceisveifiedonasimulationplatform.Theresultsshowthattheoptimizedprotectionstrategyissignificantlybetter thanthetraditionalmethodsinfaultidentficationaccuracyandactiontime,providinganewsolutionforthesafeandstable operation of the power system.
Keywords:power system; relay protection; machine learning;fault identification; strategy
随着电力系统规模的不断扩大和复杂性的日益增加,传统继电保护策略在应对现代电力系统的动态性、非线性和不确定性方面逐渐显现出局限性。(剩余5150字)