面向复杂光照条件的煤矿视频增强与目标检测算法研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

Abstract:Complex lightingenvironments(suchaslowilumination,strong shadows,anddustinterference)incoal mines seriouslyrestrictthetargetdetectionaccuracyofvideosurveillncesystems.Thispaperproposesannd-toendjointoptiization algorithmthatintegratesadaptivevideoenhancementandanimprovedYOLOv7-tiy.Fistly,amulti-scaleRetinexdecomposition modelisconstructedTheillminationcomponentispredictedbyUNet,andlcalbrightnessequalizationisachievedthrough dynamicGammacorrection.Non-localmeanfiteringiscombinedtosuppessdustnoise.Secondlythecros-stagefeaturefusion (CSFF)moduleandthelight-awareatention (AA)mechanismareintroducedintoYOLOv7-tinytoenhancethesemanticfeature expressioninlow-illuminationareas.Theexperimentsarebasedontheself-builtundergroundcoalminedatasetCMVID-2000. Theresultsshowthattheaverageprecision(mAP)ofthetargetdetectionofthealgorithminthispaperreaches89.7%,whichis (20号 12.3% higher than thatofthe baselinemodel.ThePSNRandSSIMof theenhancedimageare28.6dBandO.91respectively, andthe inference speedreaches 41 FPS,meting thereal-timemonitoring requirementsof underground mines.

Keywords:inteligent mine;video enhancement;target detection;complex lighting learning;end-to-end learning

煤炭作为我国主体能源之一,其安全生产始终是国家战略的重要关切。(剩余4921字)

目录
monitor
客服机器人