基于改进LSTM的火电厂负荷预测方法研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TM621 文献标志码:A 文章编号:2095-2945(2025)26-0139-04

Abstract:Heatingloadforecastingisaprerequisiteforguiding heatingoperationmanagementandscheduling.Heatingload forecastingisatimeseriesforecastingproblemthatrequiresustouseavailablehistoricalrecordsandweatherinformatioto predictthereal-timeheatingloadforthenext24hours.Inthispaper,ashort-termheatingloadforecastingmodelbasedona carefullydesignedtandemlongshort-termmemory(LSTM)recurentneuralnetworkwasproposed.Wedemonstratedtheprocessof datapreprocesinganddesignthelossfunction toimprovetheperformanceofthemodel.Wealsocombinedtheensemble strategywiththeLSTMmodeltoenhanceitsgeneralzationabilityandrobustness.Ontheofline(historical)testdata,the proposedmodelisabletomakesatisfactorypredictions tomeetheneedsofthelocalpowerplantInaditiontotheoflinetest, weapliedthemodeltotheonlinesystemofapowerplantin ShandongProvince.Duringtheheatingseasonof2O18,themodel continuouslymadepreditionswithouthumaninterventionforfourmonths.Theperformanceofthemodelintheonlinetestis comparable to the ofline experimental results using historical data,achieving satisfactory test results.

Keywords:deep learning; load forecasting;recurrent neural network; time series; LSTM

负荷预测对大型能源系统的规划和优化至关重要,特别是在电力和供热领域。(剩余4912字)

目录
monitor
客服机器人