面向精准农业的Python编程教学改革:PBL驱动的课程开发与实践

打开文本图片集
中图分类号:G640 文献标志码:A 文章编号:2096-9902(2025)16-0184-04
Abstract:Againstthebackdropofrapiditerationofsmartagriculturaltechnologyandexplosivegrowthofmulti-source agriculturaldataPythonprogrammingabilityhasbecomeacoreskillforprecisionagriculturepractitionersBasedonthecourse PythonandBiologicalDataProcessng,thisresearchproposesaProblem-basedLearing(PBL)AI-Pythoncollborativeteaching modelinresponsetotheprogrammingcognitiveanxietyandsubject transferobstaclesfacedbyzero-foundationlearnersmajoring inagriculture.Bybuildingathree-levelprogressveteachingframework:refiningrealbigdataprocessingneedsbasedon cuting-edgeliteratureonpreisionagiculture(askingquestions),usingAItolstostructuralldisassemblesolutions(disaeblig problems),andfinallycompletingPythoninanAI-asistedprogrammingenvironent.Codeimplementationanddebugging (problemsolving).Comparedwithtraditionalgrammar-driventeaching,thisprogramrealizestheabiltytransitionfrom"code writing"to"intellgentsolution",providesstrongsupportforcultivatinghighqualitysmartagricultualtalentshoadapttotheAI era,andprovides areplicable technical solution to thereform of programming coursesin agricultural coleges.
Keywords:precisionagriculture;Pythonprogramming teaching;A-asistedteaching;Problem-basedLeaing;interdisciplinary subjects
随着智慧农业技术的快速发展和多源农业数据的爆发式增长,Python编程已成为精准农业领域不可或缺的核心技能。(剩余5519字)