基于深度学习的车载垃圾图像分类与识别系统设计与实现

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:U463.6 文献标识码:A 文章编号:1003-8639(2025)08-0086-03

【Abstract】 Urban domestic waste management is the main link that affcts the efciency of environment and resourceutilization,andthecurrent garbagecollctionvehicle mainlyreliesontheworkers toclasifythegarbage,which isineficient,theclassificationispronetoerrors,and therearerisksinthe working environmentoftheworkers.Theuse of imagerecognitiontechnologytoautomaticallyidentifythecategoryofgarbageisakeydirectiontoimprovethelevelof garbagedisposal intelligence,deeplearning technologycaneffectivelyidentifythecharacteristicsofobjectsinthepicture, andshow goodresultsinthe garbage imageclasification task.Therefore,thispaper discusses how todesignadep learning-basedautomaticgarbageimage clasificationandrecognitionsystem,inthe hopeof improvingtheeficiencyand accuracyof on-board garbageclassification.

【Key words】 deep learning; on-board garbage; image classificatior

0 引言

1车载垃圾图像分类与识别系统的设计背景

城市每天产生大量生活垃圾,高效的分类处理对环境保护和资源回收至关重要。(剩余4143字)

目录
monitor
客服机器人