基于卷积神经网络的换流变压器智能检测算法设计

打开文本图片集
中图分类号:TM402 文献标志码:A 文章编号:2095-2945(2025)20-0142-04
Abstract:Aimingattheshortcomingsof traditional manual inspectionsandregularinspections,suchasloweficiencyand vulnerabilitytohumanfactors,thispaperproposesanoverallplanforinteligentmonitoringtechologyforconvertetrasfoers basedonintellgentalgorithms.First,thegenerationmechanismofconvertertransformersoundsignalsisanalyzedindetai includingnormaloperationsoundsignalsandfaultstatesoundsignals.Secondly,thevoiceprintcolectionofconvertertransfoers andthecompositionofvoiceprintuderfaultconditionsaredescribed.Ten,aninteligentconvertertransfomerdetectionalgorit basedonconvolutionalneuralnetworks(CNNs)isproposed.inally,thefeasiblityandfectivenessofthealgoritmareverified throughexperimentalresults.Theresultsshowthattheintellgentalgorithmcanefectivelyimprovemonitoringaccuracyandearly warning efficiency,reduce false alarm rate,and improve the security and stability of the power system.
Keywords:intelligentalgorithm;convertertransformer;intelligntmonitoring;faultstatesound;convolutionalneuralnetwork
换流变压器作为高压直流输电系统中的关键设备,其安全可靠运行直接关系到整个电力系统的稳定性和供电质量。(剩余5280字)