基于BP-ANN融合算法的短期电力负荷预测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TM732 文献标志码:A 文章编号:2095-2945(2025)20-0082-04

Abstract:As the scaleandcomplexityof the power systemcontinues toexpand,accurateshort-term power load forecasting hasbecomecrucialtothestableoperation,economicdispatchandenergymanagementof thepowersystem.Aimingatthe possiblelimitationsofBP-ANNalgorithminpredictingshort-termpowerloaddatasuchasasytofallintolocaloptimization andslowconvergencespeed,thispaperproposesashort-termpowerloadforecastingmethodbasedonBP-ANNfusionalgorith. ItisverifiedthroughexamplesthatthecorrelationcoeffientsofGA-BP-ANNandPSO-BP-ANNpredictionmodelsarehigher thanthoseofBP-ANN predictionmodel,andthepredictionerorsare lowerthan thoseofBP-ANNpredictionmodel.The resultsshowthat Short-termpowerloadforecasting methodsbasedonBP-ANNfusionalgorithmhavegoodapplicationprospects and can provide strong technical support for eficient operation and reasonable planning of power systems.

Keywords: particleswarm optimizationalgorithm; power load forecasting; BP-ANN; fusion algorithm; GA-BP-ANN

随着社会的快速发展,目前各行各业用电需求不断攀升,如工业生产规模扩大、居民生活电气化程度越来越高(各类电器增多等),使得用电负荷呈现快速增长的态势。(剩余5262字)

目录
monitor