基于深度学习的用电网络绝缘子识别定位技术

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP319 文献标志码:A 文章编号:2095-2945(2025)20-0007-05

Abstract:Atpresent,mostoftheidentificationandpositioningofpower lineinsulatorsrelyonmanualwork,whichiscostly andineficient.Thedevelopmentofdeplearningtheoryhasgreatlypromotedtheintellgentidentificationandpositioningof insulators.Thispaper takes theimagerecognitionofinsulatorsinpowersupplynetworksastheresearchobject.Basedonthe deeplearningmethodandcombinedwiththeapplicationcharacteristicsofthepowersupplysafetydetectionandmonitoring devicesystem,theaplicationinintellgentrecognitionofpowersupplysafetydetectionandmoniringimagesisstudiedInthis paper,twoconvolutionalnetworksarecombined.Thenewalgorithmreduces thegenerationofredundantwindowsandusesa moreintellgentslidingmechanismtoimprovepositioningaccuracyThisimprovementmakestheunmannedmonitoringprocesof insulatorsmoreeficient,andtoacertainextentprovidestechnicalsupprtforunmannedreal-timemonitoringof powernetworks.

Keywords: electricity network;contact line; insulator; deep learning;positioning and identification

一般输电线路或铁路接触网中极为重要的组件—一绝缘子,扮演着机械支撑和电气隔离的双重角色。(剩余5478字)

目录
monitor
客服机器人