基于贝叶斯优化的BiLSTM-Adaboost热电厂热负荷预测研究

打开文本图片集
关键词:供热负荷预测;BiLSTM-Adaboost神经网络预测;贝叶斯优化算法;超参数寻优;预测精度中图分类号:TM621.4 文献标志码:A 文章编号:2095-2945(2025)20-0001-06
Abstract:Inthispaper,aBiLSTM-AdaboostpredictionmodelbasedonBayesianoptimizationisproposedfortheheatload predictionproblemofthermalpowerplants.First,theefectsofprimarynetworkheatingparametersandmeteorologicalfactorson heatloadareconsideredcomprehensively,andthePearsoncorrelationcoeficientmethodisutilizedtoscrenthemodelinput variables.Secondly,usingthefeatureextractionabiltyofbidirectionallongshort-termmemorynetwork(BiLST)fortieeries data,AdaboostalgorithmisintroducedtointegratemultipleBiLSTMmodelstoimprovetheaccuracyandrobustnessofthe prediction;finaly,Bayesianoptimizationmethodisadoptedtooptimizethehyper-parametersofthemodeltosolvetheproblem ofreducedpredictionaccuracyduetotheperceivedimpropersetings.Simulationexperimentsarecarredoutwiththeactual operationdataofathermalpowerplant in China,andtheresultsshowthattheproposedBayesianoptimizationBiLSTMAdaboost modelhas high predictionaccuracyand stabilityin heatload predictioncomparedwith other network models.
Keywords: heating loadprediction; BiLSTM-Adaboostneural networkprediction;Bayesianoptimizationalgorithm; hyperparameter optimization;prediction accuracy
准确的供热负荷预测对保障冬季供暖、增强调峰能力、节能减排、经济运行具有重要意义
传统供热负荷预测对大量历史数据进行拟合计算,然而数学方法无法应对非线性情况。(剩余7056字)