基于预测划分卷积神经网络的全景视频快速编码算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

Fast coding algorithm based on predictive partition convolutional neural network for 36O-degree video

Xiang Hai,Chen Fen ↑ ,Qin Yiqing,LiXu,Peng Zongju (SchoolofElectrical&ElectronicEnginering,Chongqing UniversityofTechnology,Chongqing 40oo54,China)

Abstract:Inorder tosolve theproblem of excessive complexityof360-degree video basedonequirectangularprojection (ERP)of versatile videocoding(VVC),thispaperproposedafast CU partitionalgorithmbasedonpredictivepartitionconvolutionaleuralnetwork(PP-CNN).Firstly,this paperanalyzed thepartition characteristicsofCUsof ERP360-degree video indierentlatituderegionsandintroducedthelatitudefeatureinthisproposedalgorithm.Secondly,thealgorithmestablished 360-degree videodatasetwiththecharacteristicsoflatitudeandquantizationparameters.Then,this methoddesignedalightweightPP-CNN model topredicttheedgedivision informationofCUs.Next,thealgorithm basedontheoutputof PP-CNN modeldevelopedadual-thresholdCUfastpartitiondecisionschemetoremoveredundantpartitionpaterns.Finaly,thispaper designed threedecisionmodes,fast,balancedandperformanceaccording totheneeds ofcoding scenarios.Theextensive experimental results show that the proposed algorithm is able to shorten the coding time by 39.31%~61.95% on average under the full intra-frame coding configuration at the BDBR increases by only 0.37%~1 43% compared with the official testbed VTM-14.O-36olib13.1,indicatingthatthealgorithmcanrealizefastercoding speedunderthepremiseof guaranteeingcoding performance.

Keywords:ERP36O-degreevideo;latitude;CUpartition;PP-CNN

0 引言

随着通信技术和多媒体技术的快速发展,超高清视频逐渐成为人们主流的观看选择。(剩余13978字)

试读结束

目录
monitor