迭代伪点云生成的3D目标检测

  • 打印
  • 收藏
收藏成功


打开文本图片集

3D object detection based on iterative pseudo point cloud generation

Sun Lihui†,Wang Chuyao (SchoolofManagementScience&IforationEnginering,HebeiUniersityfconomics&Businss,ijzangO5OChina)

Abstract:3Dobject detection iscrucial forautonomous driving.However,incomplex scenarios,LiDAR oftenstruggles to capture complete point-clouddatadue todistance andocclusion,afectingdetection accuracy.To addressthis,the paperpro poseda3Dobject detectionmethodbasedoniterativepseudo-point-cloudgeneration(IG-RCNN).Firstly,itintroduceda channel sparsepartialconvolution(CSPConv)module inthe3Dvoxel backbone toreduce channel redundancyand fuse semanticinformationfrom diferentreceptivefields,enhancing feature fusion.Secondly,iterativerefinementgeneratedhighqualitypseudo-pointclouds,providing efectiveguidanceforthesuggestionboxandimprovingdetectionacuracy.Experiments on the KITTI dataset show that the algorithm outperforms PV-RCNN,with a 3.89% and 2. 73% accuracy improvement for pedestrians andcyclists,respectively,under harddificulty.Thisdemonstrates thealgorithm’ssuperiorityinprocesingsparse point clouddata,especiallyindetectingsmallojects likepedestrians and cyists,shows strongerrobustnessandaccuracy

Key words:autonomous driving;driver asistance system;3D object detection;pseudo-point cloud generation

0 引言

近年来随着自动驾驶技术的快速发展,人们对车辆感知和理解周围环境的要求不断提高,3D目标检测技术受到了极大的关注。(剩余14348字)

目录
monitor