基于句子转换和双注意力机制的归纳关系预测

打开文本图片集
Inductive relation prediction based on sentence Transformer and dual attention mechanism
Li Weijun a,b† ,Liu Xueyang²,Liu Shixia,Wang Ziyia,Ding Jianpinga,Su Yileia (a.Colegeofuene&oKbafgs&asellgentossnofateEcs sion,North Minzu University,Yinchuan75oo21,China)
Abstract:Relation predictionisaimportant task in knowledgegraphcompletion,aimedat predicting mising relationships between entities.Existing inductiverelationprediction methodsoften facechalenges inadequatelymodeling semanticand structural information.Toaddress thisisse,thispaper proposedaninductiverelation predictionmodel basedonsentence transformationandadual-atentionmechanism.Theproposedmethodenhancedentitysemanticrepresentationsbyautomaticallyretrievingdescritionsandincorporatesadual-atentionmechanism,whichonsiderededgeandelationawarenes,toacu ratelymodelthecomplexinteractionsbetweeentities.Firstly,itextractedtheclosedsubgraphofthetargettripleanduseda random walk strategytosearchformuli-hoprelational paths.Thesetriplesand pathswerethen transformedinto natural language sentences,generating semanticall rich sentence embeddings.Next,it updated the subgraph embeddings using GCN andbidirectionalGRU,combiningsentenceandsubgraphembeddings tocapturebothstructuralandsemanticinformationExperimentalresultsonthree public datasets—WN18RR,FB15k-237,andNELL-995—demonstratethattheproposed method outperformsexisting methodsinbothtransformationandinductiverelationpredictiontasks,validatingtheimportanceof the dual-attention mechanismandsentence transformationin improving model performance.Thisapproach efectively enhances the accuracy and efficiency of relation prediction in knowledge graphs.
Key words:knowledge graph(KG);inductiverelation prediction;sentence Transformer;dual atention mechanism;random walk pathfinding strategy
0 引言
知识图谱(KG)是一种用于表示和存储客观世界知识的图形化知识库,通过三元组方式进行形式化描述,广泛应用于网络搜索[1]、社区检测[2]和推荐系统[3]等任务。(剩余17867字)