基于混合深度强化学习的云制造云边协同联合卸载策略

  • 打印
  • 收藏
收藏成功


打开文本图片集

Joint offloading strategy for cloud manufacturing based on hybrid deep reinforcement learning in cloud-edge collaboration

Zhang Yaru,Guo Yinzhang† (Colegeof ComputerScience&Technology,Taiyuan UniversityofScience&Technology,TaiyuanO3o024,China)

Abstract:Toaddress theissueofreal-time perceptiondata frommanufacturingresources being dificult toprocess promptlyin acloud-edgecollaborative cloud manufacturingenvironment,considering uncertainfactors suchas the limited computingresources attheedge,dynamicallychanging network conditions,andtaskloads,thispaper proposedacloud-edgecolaborative jointoffloading strategybasedonmixed-baseddeepreinforcementlearning(M-DRL).Firstly,thisstrategyestablishedajoint ffloadigmodelbycombiningdiscretemodeloffloadinginthecloudwithcontinuoustaskoffloadingattheedge.Secondly, this strategydefinedtheoptimizationproblemasaMDPtominimizethetotalcostofdelayandenergyconsumptionoveraperiod. Finally,thispaper used the M -DRL algorithm,which utilized an integrated exploration strategy of DDPG and DQNand introducedalongshort-termmemory network(LSTM)intothenetworkarchitecture,tosolvethisoptimizationproblem.Simulation results showthatcompared with some existing ofloadingalgorithms,the M-DRL method has goodconvergence and Stability, andsignificantlyreduces thetotalsystemcost.Itprovidesanefectivesolutionforthetimelyprocessingofmanufacturingresource perception data.

Keywords:cloudmanufacturing;cloud-edgecolaboration;jointofloading;LSTMreinforcementlearning;Markovdecision process(MDP)

0 引言

云制造作为一种新兴的生产模式,以前所未有的速度改变着全球制造业的格局。(剩余20442字)

目录
monitor