改进自适应大邻域搜索算法及其在旅行商问题中的应用

打开文本图片集
Improved adaptive large neighborhood search algorithm and its application to traveling salesman problem
Ao Hongruila, Zhang Jihuila,1bt,Chen Shengzong² (1.aScholofutomaindongKeybotoryfdstralControlTologingdoUnesityQingdaSd China;2.School of Economics& Management,Beihang University,Beijing 10o191,China)
Abstract:Thisstudyenhancedthetraditionaladaptivelargeneighborhoodsearch algorithm(ALNS)toaddressthechallngesof initial temperaturesetingandlowaccuracywhensolving large-scaletravelingsalesman problems.Firstly,this paper proposedtwoadditional directionalremovaloperators basedonnearestneighborinformation:thenearest neighborremoval operator forregionalsolutionremovalandthenonnearestneighborremovaloerator forsinglepointremoval,which improved search efciency.Secondly,Itreplacedthetraditional Metropolis criterion withanimprovedRRTaceptance criterion,eliminatingtheneedforinitialtemperatureparametersandenhancingthealgorithm’suniversalityFinally,experimentalesults fromvarious testcases in the TSPLIBdatabase showthattheimprovedALNS performs wellin termsof acuracy andconvergence speed, indicating its potential for handling large-scale instances.
Keywords:improved adaptive large neighborhood search algorithm;neighbor operator;RRTacceptance criteria;traveling salesman problem(TSP)
0 引言
旅行商问题(TSP)是一个经典的组合优化问题。(剩余14649字)