面向可重构阵列的CNN多维融合数据复用方法

打开文本图片集
中图分类号:TP183 文献标志码:A 文章编号:1001-3695(2025)06-027-1801-06
doi:10.19734/j. issn.1001-3695.2024.10.0418
CNN multidimensional fusion data reuse method for reconfigurable arrays
Zhang Xiaofana†,Jiang Linʰ,Li Yuanchengʰ,Sheng Mingweib (a.Colegeofia&foatinTooClfompuece&Tcology,Xi'UiestofSee logy,Xi’an710600,China)
Abstract:Reconfigurablearrayarchitecturescombinetheflexibilityof general-purposeprocesors withthehigh energyefficiencyof dedicated hardware,making themanidealsolution forcomputation-and memory-intensiveapplications suchasconvolutional neuralnetwork(CNN).However,ncreasingcomputationaldemandsaisememoryacessoverhead,itingeficiencygains.Toaddressthis,thispaperproposeda CNN-orientedmultidimensionaldatareuse method forreconfigurablearrays.Byutilizing intra-computing-unitdata cyclicreuseandinter-unitdata pulsationtransfer,itachieveddatareuseacross bothcomputingunitsandarraydimensions.Taskswitching wasenabledthrougharryreconfigurationtofacilitatemultidimensional datareuse.Experimentalresultsonthe VirtexUltraScale440board showthatthis methodreduces memoryaccess byup to 69.4% ,improves computational speed byover 16.2% ,and achievesa computingunitutilizationrateof 94.1% .These results demonstrate thathis method enhances datareuseforCNNonreconfigurablearrys,enabling eficienthardware acceleration.
Key words:convolutional neural network;reconfigure structure;data reuse;paralel acceleration
0引言
近年来,随着人工智能研究的兴起,卷积神经网络(convo-lutionalneuralnetwork,CNN)凭借其出色的特征提取能力和良好的并行性,在图像分类、目标检测等领域得到了广泛应用[1]。(剩余14882字)