边缘计算中动态服务器部署与任务卸载联合优化算法

打开文本图片集
中图分类号:TP393 文献标志码:A 文章编号:1001-3695(2025)06-031-1830-08
doi: 10.19734/j. issn.1001-3695.2024.11.0462
Joint optimization algorithm for dynamic server deployment and task offloading in edge computing
BaiWenchao,Lu Xianling† (SchoolofInternetofThings,JiangnanUniversity,WuxiJiangsu214122,China)
Abstract:Inmobileedgecomputing,thefixedlocations of edgeserverdeploymentscanleadtoimbalancedresourceutilizationof edgeservers,resultinginincreasedlatencyandenergyconsumptionduringthetask ofloading process.Toaddressthis issue,thispaperproposedaierarchicalreiforcementlearing-basedjointoptimizationalgorithm.Firstly,itdecomposedthe problemofedge serverplacementand task ofloading and transformedthemintoabi-Markovdecision processThen,itconstructedaglobalintellgentagentmodelforhigher-leveledgeserverdeploymentusingthedeepQ-network,andaccelerated modelconvergencebyintroducingthe K-means algorithmtoprovide high-qualitysamplesforthehigher-layer policy.Itbuilta lower-layer multi-agentmodelfortaskofloadingusingthemulti-agentproximalpolicyoptimizationalgorithm,andimproved trainingstabilitybyintroducingstatenormalizationtoreducethestatesfeaturescalediferencesinthelower-layerpolicy.Finally,itachievedtheultimateoptimizationgoaltroughalternatingoptimizationofthehigher-layerandlower-layerpolicies. Simulationresults indicatethattheproposedalgorithmcanachieveoptimal serverdeploymentandtask ofloading strategies, comparedtorandomstrategiesandotherreinforcementlearningalgorithm,and itdemonstratesgreater benefitsintermsof model training efficiency,target rewards,and load balancing metrics.
Key words:edge computing;task ofloading;edge server deployment;hierarchical reinforcement learning
0 引言
随着5G和6G技术的高速发展,越来越多的计算密集型应用出现[1],如虚拟现实和面部识别等。(剩余20850字)