基于数据驱动的WSN故障检测框架

打开文本图片集
中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)06-029-1815-07
doi:10.19734/j.issn.1001-3695.2024.10.0426
Data-driven WSN fault detection based framework
Xu Hana, Tong Yinghuaa,bt (a.DeptofComper,.TeStateKeybooofbenItellgentIfoaionPresing&AcoQingiNlUesit, Xining810008,China)
Abstract:Wirelessensor network nodes typicallydeployincomplex environments,where failuresare inevitable.Toaddress thischallenge,thispaperproposedadata-drivenframeworkforreal-timefaultdetectioninWSN.Thesystemfilteredandcollectedinitialoperationaldatafromwirelesssensornetworks,usingthisdatatoconstructdatasetsfortrainingfaultdetection models,withthegoalof enhancing modelaccuracy.Theapproach segmented thedata intotime windows,alowing the fault diagnosis model to identifyandcorectsensorfaults withinthemostrecent window.The modelthenreusedtherefined dataset toretrainitself,preparingforthedetectionoffaultsintheupcoming window.Throughcontinuouscyclesof raininganddetection,thesystemensuredthereal-timeupdateof thedetectionmodeltoimproveitsperformance.Experimentalresultsdemonstratethat,whencomparedtoclassicalandstate-of-the-artmachineleamingdetectionmodels,thisapproachachievesbetter precision,accuracy,and eficiencyacrossvarious typesoffaultdatasets.Consequently,theframework offerssuperiordetection capabilities and adapts more effectively to the dynamic nature of WSN environments.
Key words:wireless sensor network;fault tolerance;faultdetection;machinelearing;datadriven;data interpolation
0 引言
在无线传感器网络(wirelesssensornetwork,WSN)中,传感器故障会导致传感器读数不可靠和不准确[1]。(剩余15464字)