基于生成对抗网络与渐进式融合的多模态实体对齐

  • 打印
  • 收藏
收藏成功


打开文本图片集

Multimodal entity alignment based on dual-generator shared-adversarial network

Feng Guanga†,Zheng Runtingʰ,Liu Tianxiangʰ,Yang Yanruʰ,Lin Jianzhonga, Zhong Tinga,HuangRongcanʰ,XiangFengʰ,LiWeichenb (a.SchoolofAutomation,b.SchoolofComputerScience,Guangdong UniversityofTechnology,Guangzhou510o6,China)

Abstract:Inthefieldofeducation,knowledgegraph fusionplaysacrucialrole.Asacore technologyof knowledge graphfusion,entityalignmentaistoidentifyequivalent entitypairsacrossmultiple knowledge graphs.Most existing entityalignment methodsassume thateachsourceentityhasacorresponding entityinthetargetknowledge graph.However,whenusingcrosslingualandcros-raphetitysets,theproblemofdanglingentitiesarises.Toaddresstisissue,thispaperproposedthedualgeneratorshared-adversarial network entityalignment model(DGSAN-EA).This modelutilized partialparametersharig and anoptimalselectionstrategytotraintwogenerators,selectingtheoptimalgneatortoconditionallgenerateewetisacoss knowledgegraphs,therebyenhancing thedatasetand solving thedangling entityproblem.Furthermore,aprogressive fusion strategyandtheintroductionofdistributionconsistencylossfunctionefectielyresolvethedistortionoffusedfeatureformationandthemisalignmentbetweenmodalitiesinmultimodalentityalignment.Validationonmultiplepublicdatasetsshows that compared to existing multimodal entityalignment models,DGSAN-EAachieveshigher hit@ kand MMRscores,demonstrating itseffectiveness in entity alignment tasks.

Key words:knowledge graph(KG);entity alignment;adversarial network;dual generator;parameter sharing;progresive fusion;distribution consistency

0 引言

在大数据时代背景下,知识图谱(KG)作为结构化知识表示的重要工具,其应用已扩展至教育、医疗、金融等关键领域。(剩余22678字)

目录
monitor