基于信息素矩阵优化蚁群算法求解城市建模的旅行商问题

  • 打印
  • 收藏
收藏成功


打开文本图片集

Travelling salesman of urban modeling based on pheromone matrix optimization ant colony algorithm

Liu Daia,Zhang Yamingʰ,Wang Kaib,Cui Haiqingh† (a.EngineegnCteFlfocftoutoatoltionUsitof 300000,China)

Abstract:This paper proposedanoptimizedantcolonyalgorithm toaddressthe traveling salesman problem(TSP)inurban modeling.Thealgorithmintegratedrandomaveragingofthepheromone matrix,adaptiveperturbation,anddynamicproportional resetingstrategies tooptimizethepath search intheprocessof acquiringurban modeling materials.Aftereachroundof path selection,thealgorithmgloballyupdatedthelocalpheromonebasedonthequalityof thepathsandacceleratedconvergence through2-optoptimization.Initialy,itappliedtherandomaveraging strategy.When theoptimalpathhadnotbeenupdated formultiple iterations,thepheromoneofrandom nodes wasaveraged toavoidlocaloptima.Whenmultipleatemptsattherandomaveraging strategyproveinefective,itintroducedtheadaptiveperturbationstrategy.Thisstrategyperturbedtheperomone matrix toselectpaths,therebyreducing theriskoflocal optima.This strategyperturbedthepheromonematrix toselect paths,reducingtheriskoflocaloptima.Whenthequalityof theoptimalpathdecreases byacertain proportion,itusedthe dynamicproportionalresetingstrategytoincreasethediferencebetweenhighandlowpheromonevaluesinthematrix,further accelerating convergence.Theresultsshowthatthealgorithm efectivelyimprovesglobal search capability,acelerates the convergence process,and provides a solution to the TSP in urban modeling.

Key words:antcolonyalgorithm;traveler’ssalesmanproblem;combinatorial optimization;2-optalgorithm;urban 3D modeling

0 引言

随着城市场景丰富和城市系统扩大,城市管理进人新阶段。(剩余20675字)

目录
monitor