基于ABSA与动态少样本提示的主观知识对话回复生成模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

Subjective knowledge dialogue response generation model based on ABSA and dynamic few-shot prompting

Rao Dongning,Zhuang Jietao (School ofComputers,Guangdong UniversityofTechnology,Guangzhou 51ooo6,China)

Abstract:Inthelatest task-oriented dialoguesystem challenges,efectivelyutilizing subjective knowledge(e.g.,personal opinions)iscrucialforaddresingusers’specificneeds.However,duetotheiherentlysubjectivenatureofsuchknowledge, howto efectively integrate and leveragethis information hasbecome a key focus of research.This paper proposeda method called DynSense,aimedataddresing thechallngeof generatingcomprehensiveand generalizedresponsesfrommultiplerelevant subjective user opinions.DynSense firstlyemployedaspect-basedsentiment analysis (ABSA)to parse the aspects and sentiment polarities withinsubjective knowledge snippets,aligning them with theuser’squery.Then,it utilizedanadvanced dialoguemodel thatcombined thedialoguecontext withABSA-enhanced information to generateresponses.AspeciallydesignedDynMatchalgorithm guidedthe model to generate morerelevantresponses bydynamicallselecting high-quality knowledgefragmentsmost similartothecurrentqueryasfew-shot prompts.The experimental resultsdemonstrate thatDynSense exhibits exceptionalabilityincapturing latentsemantic featuresand emotional tendencies,generating precise,comprehensive, andhighlyalignedresponses basedonpastuserreviews.Compared toexisting models,DynSenseshowssignificantimprovements across various evaluation metrics on the SK-TOD benchmark.

Key words:task-oriented dialogue systems;subjectiveknowledge;aspect-based sentiment analysis (ABSA);dynamic fewshot prompts

0引言

经典的任务导向型对话系统主要依赖于事实性知识,例如文献[1\~4]中所使用的常见问题(FAQ)数据库。(剩余18756字)

目录
monitor