融合局部-全局历史模式与历史知识频率的时序知识图谱补全方法

打开文本图片集
Time-series knowledge graph completion method combining local-global historica pattern and historical knowledge frequency
Jia Kai a,b† , Wang Yangpinga,b, Yang Jingyu a,b , Zhang Xiquan a,b (aSchoolofcoic&fioingolValilExpetalcgCtefilsit&Control,LanzhouJiaotongUniversity,Lanzhou73oo7O,China)
Abstract:TKGsare dynamicrepresentations of evolvingfacts,and theircompletion task involvespredicting futureunkown factsbasedonhistoricaldata.Thekeyliesinunderstanding historicaldata.However,existingmodelshavelimitationsincapturingthefeaturesofhistoricaleventsandcannotaccuratelyextractusefulinformationfromtimestamps.Fromtheperspective of historical evolution,consideringthesequence,frequency,andperiodicpaternsofhistorical factscomprehensivelysbeneficialfor predicting future facts.Therefore,thispaper proposeda temporal knowledgegraphcompletion algorithm(LGHHKF)thatintegratedlocal-globalhistoricalpaternsandhistoricalknowledgefrequency.Specificall,itfrstlyusedalocale current graph encoder network to modelthe intrinsicassciationsand dynamic evolutionof eventsatadjacent timestamps. Then,ituseda global historicalencodernetworktoconsiderallrelevantfactsatprevious timestampstoavoidlosingntitiesor relationsthatdidn'tappearatadjacenttimestamps.Next,itlearedthefrequencyscoresof thesefactsthroughahistorical knowledge frequencylearning module toenrich the model’sprediction basis.Finally,afterbalancing between thetwo encoders,itusedaperiodicdecodertoperforminferenceandcompletion.Thepaperusedfourbenchmark datasets to evaluate theproposedmethod,andtheexperimentalresultsprovethatLGH-HKFishighlycompetitivecomparedtoothercurrentmodels in most cases.
Key words:temporal knowledge graph;completionalgorithm;local cyclic graph encoder;global history encoder;frequency of historical knowledge
0 引言
知识图谱补全技术对现在热门的辅助搜索、推荐系统、问答系统等领域都有重大的意义,只有当知识足够完善,下游任务的准确率才能得到进一步的提升[1]。(剩余17658字)