结合多尺度特征与局部采样描述的多模态图像配准方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

Research on multimodal image registration method combining multi-scale features and local sampling description

Jia Zhiyou,Wang Guogang (School of Information Enginering,Shenyang Chemical University,Shenyang11O142,China)

Abstract:Aimingatthematching dificultiescausedbytheexistenceofserious geometricdiferencesandnonlinearntensity diference(NID)indiferentmodal images,this paperproposedamultimodal imagealignmentmethodcombining multi-scale featureswithalocalsamplingdescription.Firstly,themethodintroducedanonlineardifusionequationtoconstructanonlinearscalespace,andthen itcombineda phaseconsistencyandorientedFASTandrotatedBRIEF(ORB)algorithm to obtain multi-scalestable feature points.Then,the method proposedarotation-invariant doubleGaussiansamplingdescriptor,which could robustly span the rotation difference of [0∘,360∘) in the presence of NID. Finally,the method introduced an image recoverystrategy.The methodobtainedtheoptimal geometrictransformationmodel through primarymatching,corected the geometricdiferences existingbetween images,andthenperformed secondarymatching toimprovethematchingaccuracy. Experiments on multimodal data sets inremote sensing,medicine,andcomputer visionshowthattheroot-mean-squareerorof the proposed method can reach within 1.5 pixels and the correct matching rate can exceed 98% when there are geometric diferencessuchasscaleandrotation.Theresultsdemonstrate that this methodcanovercometheinfluenceof nonlinearradiation difference between images and achieve high precision registration.

Keywords:multimodalimages registration;nonlinear scale space;phase coherence;double Gausian sampling descriptor; nonlinear radial disparity

0 引言

图像匹配是计算机视觉领域的一个基础和关键问题,其目的是在两幅或多幅图像中提取可靠的特征对应,使之成为图像融合、图像检测、目标跟踪等多个领域的先决条件。(剩余14258字)

目录
monitor