使用NGN算法改进不平衡数值数据的研究

打开文本图片集
Research on improving imbalanced numerical data using NGN algorithm
Xing Changzheng,Zheng Xin,LiangJunfeng (CollegeofElectronic& Information Engineering,Liaoning Technical University,HuludaoLioning1251o5,China)
Abstract:When minorityclassamplesare scarce,traditional oversampling methods struggleto increasethesamplecount. This paper introduced a NGN algorithm that synthesized new data byadding generator-generated dataas noise to theoriginal minorityclassamplesuntilbalance wasachieved.Thegenerator employedafour-layerfullyconnectednetworkandintegrated low-structureandhigh-structurefeaturegenerationtechniquestoenhancethequalityanddiversityofthegenerateddata.For verylimited minorityclassamples,NGNgeneratednewsamples,mergedthemwiththeoriginal minorityclassdata,and performedclustering to achieve balance withinclusters while minimizing the impactof noise.The study evaluated NGNon6unbalanceddatasets,applied4oversamplingalgorithms tobalancethedatasets,andclasifiedthebalanceddatasetsusing4classificationmethods.TheexperimentalresultsdemonstratethatNGNefectivelyincreasesthenumberof minorityclasssamples, enhances the model’sability to learn minority classfeatures,and significantly improves classification performance.
Key words:numerical generator network(NGN);generator;noise;extremely scarce minority class;balance
0 引言
数据不平衡的问题源自于样本分布的不均衡。(剩余15909字)