一种面向情绪压力分布外检测的多任务跨模态学习方法

打开文本图片集
中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)06-018-1734-08
doi:10.19734/j. issn.1001-3695.2024.10.0457
Multi-task cross-modal learning approach for out-of-distribution detection of emotional stress
Wan Yichen 1,2 , Xing Kai 1,2† ,Liu Yu³,Yang Hui4,Xu Junhan1²,Yuan Yanxue 1,2 (20 (1.SchoolofomputerSiee &Tcholog,Uniersitofcince&TholfCina,Hefe6,Cha.SuzhostuefrAd vancedResearch,Unierstyofience&echologfina,SuzouJangsu5o,hina;3NnjingDrumowrHsptal,jing 210008,China;4.SchoolofLife Sciences,NorthwesternPolytechnical University,Xi’an71oo72,China)
Abstract:Recent research indicates that emotional stress detectionsystemsbasedon PPG signalscan bea potential convenient solution.However,PPG-based methods usuallyinduce severe OOD issues when detecting stressin previouslyunseen subjects duetosignificantvariations inPPGsignalsacross individuals.Toaddressthischallnge,thispaperproposedarossmodal stressdetection model basedonmulti-task learning(CSMT).Byintroducing ECG signalreconstructionand multiple cardiovascular feature prediction asauxiliarytasks toenhancethefeatureextractioncapabilityofPPG signals,theproposed methodperformedcollaborativeoptimizationofPPG-based stress detectioninhigh-dimensionalrepresentationspace,thereby learning robuststressdetectionrepresentationsacrossindividuals.Experimentalresultsonthe WESADdatasetdemonstrate that inleave-one-subject-out validation tests,CSMT achieves best accuracy and F1 scores compared to existing methods in both thre-class (neutral/stress/amusement)andbinary(stress/non-stress)clasificationtasks,meanwhileefectivelymitigating theOODgeneralization probleminstressdetection.Theablation experimentsfurthervalidatetheefectiveness ofCSMTin enhancing model generalization capability.
Key Words:multi-task learning;photoplethysmography(PPG); stress detection; out-of-distribution(OOD)issues
0 引言
情绪压力是一种复杂的生理心理反应,长期或慢性的情绪压力会对人体的呼吸系统、心血管系统及内分泌系统等产生严重的不良影响[1],增加患焦虑症、抑郁症、心脏病以及注意力障碍等身心健康问题的风险[2]。(剩余20369字)