基于改进YOLOv8模型的玉米叶斑病快速识别方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:玉米;叶斑病;改进;YOLOv8模型;快速识别

中图分类号:S126;TP391.41 文献标识码:A

文章编号:0439-8114(2025)05-0160-07

DOI:10.14088/j.cnki.issn0439-8114.2025.05.025 开放科学(资源服务)标识码(OSID):□

A rapid identification method for maize leaf spot disease based on the improved YOLOv8 model

ZHANGLu,WUXue-lian (Economics and Management School,Yangtze University,Jingzhou ,Hubei,China)

Abstract:Toachieverapididentificationofmaizeleafspotdisease,thedetectionperformanceoftheimprovedYOLOv8modelwasoptimizedbyintegratingtheGlobalAtentionModule(GAM),Slim-Necklightweightmodule,andInner-CIoUlossfunction.Compared with the original YOLOv8 model,the improved YOLOv8 model(GAM + Slim-Neck+Inner-CIoU)showed increases of 4.15% in Precision, 5.51% in Recall, 3.91% in mAP @ 0.5,and 11.35% in mAP @[0.5: 0.95],while the number of parameters and detection time decreased by10.39% and 3.42% ,respectively. The improved YOLOv8 model outperformed other models(YOLOv3,YOLO v5 ,YOLO v6 ,and Faster R-CNN) in Precision,Recall,mAP @ 0.5,and mAP ,while also demonstrating significant advantagesinparameterquantitynddetectiontime,combining higheficiencywithlightweightcharacteristics.TheimprovedYOLOv8model eficientlycaurediticaliforation,fullyitegatedultdimesioalatures,ndratioallloatedomputatioalrouces,thereby enhancing recognition accuracy.

Key words:maize;leaf spot disease;improvement;YOLOv8 model; rapid identification

随着农业生产规模的扩大和气候变化的影响,玉米叶斑病已成为全球玉米生产中的主要病害。(剩余9061字)

目录
monitor