基于iTransformer与LSTM模型融合的农场气温多步预测

打开文本图片集
关键词:iTransformer;LSTM;模型融合;多特征;农场气温;多步预测
中图分类号:TP183 文献标识码:A
文章编号:0439-8114(2025)05-0134-07
DOI:10.14088/j.cnki.issn0439-8114.2025.05.021 开放科学(资源服务)标识码(OSID):
Multi-step temperature prediction for farms based on iTransformer and LSTM model fusion
XIE Qi, ZHANG Tai-hong,LIU Hai-peng
(Colegefftteala of Intelligent Agriculture,MinistryofEducation,Xinjiang Agricultural University,Urumqi830o52,China)
Abstract:Toadressthenonlinearandomplexcharacteristicsoffarmtemperaturedata,basedonmeteorologicalstationdatafrom HuaxingFarminChangji City,XinjiangUygurAutonomous Region,sevenfeaturesincludingtemperature,groundinfraredtemperature,dewpointtemperaturerelativehumidityaporpressure,stationpressure,andsea-levelpressurewereselectedasmodelinput features throughSpearancorelationanalysis,andomparativeanalsisascoductedamongtheiransformer-LSTodelras former model,LSTMmodel,iTransformermodel,andTransformer-LSTMmodel.TheresultsshowedthattheiTransformer-TM modelachievedthebestperformance.Comparedwiththeoptimal baselinemodeliTransformer,thismodelreducedtherootmean square error(RMSE)by 13.72% ,mean absolute error ( MAE )by 14.12% ,and mean absolute percentage error ( MAPE )by 13.61% TheiTransformer-LSTMmodelcouldefectivelyextracttime-series featurerepresentations,capturelong-termdependencies,and characterize globalaturesandcontextualinformation,makingitsuitableforulti-featureulti-steptimeseries temperatureprediction tasks.
Key Words:iTransformer;LSTM;model fusion;multi-feature; farm temperature;multi-step prediction
气候变化可能引发极端天气事件,如干旱、洪涝、低温和霜冻,这些现象对农业生产造成严重风险。(剩余9038字)