TVFEMD寻优分解与智能算法优化的FLN土壤 含水量预测

打开文本图片集
关键词:时变滤波经验模态分解(TVFEMD);算法优化;快速学习网(FLN);土壤含水量;预测中图分类号:S271;TV93 文献标识码:A文章编号:0439-8114(2025)05-0147-08DOI:10.14088/j.cnki.issn0439-8114.2025.05.023
TVFEMD optimization decomposition and FLN-based soil moisture content prediction using intelligent algorithm optimizations
TIANYu1,CUIDong-wen²
1.YunnanInstituteofWater&HydropowerEngineeingInvestigation,DesignandResearch,Kunming 65O1,China; 2.Wenshan Zhuang and Miao Autonomous Prefecture Water Bureau,Wenshan 663Ooo,Yunnan,China)
Abstract:BasedotheobservedsoilmosturecontentdatafromlO,2,and40cmsoillyersatTanxingadPojiaostationsinYunnanProvince,a prediction model(TVFEMD-BSLO/AO/IVYA/EGO/PSO-FLN)wasconstructedbyimprovingthetime-varying filter empirical modedecomposition(TVFEMD)andfastlearning network(FLN)methods toenhancethetime-series predictionaccuracy of soil moisturecontent.Bycomparingtheperformanceofdiferentoptimzatioalgoritms,asuperiormodelingapproachasprovidedforsoilmoistureprediction.Theresultsshowed thattheTVFEMDdecompositionperformancewasprimarilyinfluencedbytwo key parameters:Bandwidth thresholdand B-splineorder.Optimizing these twparametersusing theIVYAalgorithmimproved the timeseriesdecompositionqualityand further enhanced themodel’sprediction performance.The TVFEMD-BLSO/AO/IVYA/EGO-FLN modeldemonstratedoutstandingpredictionperformanceonthetrainingset,withameanabsolutepercentageerror(MAPE)of 0.002 % \~0.077% and a coefficient of determination ( R2 )of 0.999 7\~1.000 0. The MAPE in the prediction set was 0.006%\~0.459 % , and R2 was0.996 6\~1.000 0.Compared with the TVFEMD-PSO-FLN model,the TVFEMD-BLSO/AO/IVYA/EGO-FLN model showedsignificantimprovements inbothfitingperformanceandpredictionaccuracyOptimizingFLNhyperparametersusingBLSO, AO,IVYA,ndEGOagorithmseffectivelyimprovedmodelpeformance,withtheIVYAalgorithmexhibitingthemostnotableoptimization effect.
Key Words:time-varyingfilter empirical modedecomposition(TVFEMD);algorithmoptimization;fastlearning network(FLN); soil moisture content;prediction
土壤含水量是描述土壤干湿程度,反映旱情最直接、最重要的指标之一,提高土壤含水量时间序列预测精度对于旱情预警、农业生产、生态系统保护和水资源管理具有重要意义。(剩余10412字)