基于Stacking集成算法的中国南方地区粮食产量预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:Stacking集成算法;粮食产量;中国南方;预测

中图分类号:F326.11;S126 文献标识码:A

文章编号:0439-8114(2025)05-0155-05

DOI:10.14088/j.cnki.issn0439-8114.2025.05.024 开放科学(资源服务)标识码(OSID):

Grain yield prediction in southern China based on Stacking ensemble algorithm

MADian-jing',ZHAO Jia-song1,YAN Wei-yu1,DUANGuang-jun1,LIU Zhen-yang2,WU Shao-tian’ (1.School of Big Data,Yunnan Agricultural University,Kunming 65O2O1,China; 2.School of Data Science and Engineering,Kunming City College,Kunming 65Oo32,China)

Abstract:Basedonthe grainyielddataand11-dimensionalrelevantactorsfromAnhui,Hubei,Hunan,Jiangsu,andSichuanprov inces insoutherChinabetwen1998and2O22,theBP-SVR-Stacking grainyieldpredictionmodelbasedonthe Stacking ensemble algorithmwasdevelopedandcomparativelyanalyzedwiththeBPneuralnetwork modelandSVRmodel.Theresultsindicatedthatthe mean absolute error ( MAE )and mean absolute percentage error ( MAPE )of the BP-SVR-Stacking model were significantly lower than thoseof theBPneuralnetworkmodelandSVRmodel,hichdemonstratedthesuperiorpredictioncapabilityoftheBP-SVR-tacking modeloversingle machinelearningmodels.ComparedwiththeBPneuralnetworkmodelandSRmodel,thecoeficientofdetermination ( R2 )of the BP-SVR-Stacking modelincreasedby0.124and0.122 respectively,suggesting thatthe BP-SVR-Stacking model possessed excellent fiting capability and prediction performance.

Key Words:Stacking ensemble algorithm;grain yield;southern China;prediction

粮食产量是一个涉及生态学、社会学、经济学和统计学的复杂问题,其产量受环境、科技、经济、政策和劳动力等多重因素的影响[1。(剩余7955字)

目录
monitor