机器学习模型在外科手术患者压力性损伤风险预测中的应用

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号 R473.6 文献标识码A文章编号 2096-7721(2025)11-1958-08

Application of machine learning models in predicting pressure injury risk in surgical patients

YANG Jun', CHEN Xiao’, WANG Zhijing2, WANG Yafei2, ZHANG Junqing3,TIAN Kun4,ZHANG Haiyan5 (1.ObstetricicalegoutralHspialngzuna;eptfsigngzualal CangzhouO61ooo,China;3.DeliveryRoomofObstetric Medical Center,CangzhouCentral Hospital,CangzhouO610oo,Cina; 4.DepartmentofCardiothoracic Surgery,Cangzhou CentralHospital,Cangzhou O61ooo,China;5.NursingTeachingand Research Section, Cangzhou Medical College,Cangzhou O61ooo, China)

AbstractObjective:Toinvestigateandanalyethepredictiveefcacyofmachinelearingmodelsinpredictingpressreinjuryrisks amongsurgicalpatients.Methods:40lsurgicalpatientsreadmitedtoCangzhouCentralHospitalfromDecember2022 toDecember2023 wereenrolldTheyweredividedintothebservationgroup(withpressureijury)andthecontrolgroup(withoutpresureinjurybased ontheourenceofpresureinjury.Clinicaldatafromthegroupswerecolectedviaelectronicmedicalrecords.Comparativeanalysis wasperformedusingregressionmodelinmachinelearingtoevaluatethepredictiveperformanceoftraditionalmodels,machineleaing models,andotaldeoultinosturebilityctiiilityfrtafe,totaladenregly turningfreqeyorarartas,oinstoycoinceenia,siesiogsdl serumalbuminlevelsweresignificantlyassociatedwithpressureinjury insurgicalpatients.TheAUCvaluesrankedasfollows:Random Forest>XGBoost>NuralNetwork>BinaryLogisticRegresion>Total Braden Score.Conclusion:Machinelearningmodelshassuperior predictiveperformanceforpressureinjuryriskcomparedtotradionalmodelsandtheBradenscore.Cliniciansshould prioritizefactors suchasskinmoisture,liitedmobilityoroaryartdisease,okinghistorycontinence,andbdriddentie>datoance preventive measures against pressure injuries.

Key wordsMachine Learning; Surgery; Pressure Injury; Risk Prediction

压力性损伤作为外科手术患者高发且严重的并发症,不仅威胁患者健康、延长住院时间,还会带来巨大的医疗负担[1-2]。(剩余9664字)

monitor
客服机器人