基于度量学习的收割机滚动轴承故障诊断

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:S23;TP23 文献标识码:A 文章编号:2095-5553(2025)10-0112-08

Abstract:Toachievethediagnosisofroling bearing faultsinagriculturalmachinery,reducemaintenancecostsand ensure production eficiency,this study designs amatching network based on the idea of metric learning for bearing fault diagnosisinscenarioswith limitedactual samples.Thematching networkconsistsoftwostructurally identical sub-networks.Thesesub-networksextractand fuse the time-frequency featuresof thebearing vibration signals,and determine thefault type of the sample bycalculating the similarity between the output feature vectorsof the two sub-networks.Theresults show thatthe proposed model canaccurately extract the time-domainand frequency-domain featuresof bearing faults,clearlydistinguish thedistributionof diferent typesoffault samplesinthefeature space,and its performance is the best when the number of learnable samples is the same.The diagnostic accuracy reaches up to 99.33% .Whenthe sample size issmall,theaccuracyrateof the metric learning methodis higher than that of the conventional training method.Comparedwiththemethodof extracting featuresfromasingledomain,themethod that integrates time-frequency featuresperformsbetter.

Keywords:harvester;rolling bearing;fault diagnosis;metric learning;matching network;time-frequency feature:

0 引言

农用收割机的作业效率与轴承的运行状态密切相关,旋转部位的轴承起支撑轴上零件及控制旋转精度的作用。(剩余11976字)

目录
monitor
客服机器人