基于生成式扩散模型的人脸图像隐私保护算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2025)17-0170-08

Abstract:Aiming at the problems that thefacial information in images is proneto privacy leakage,traditional methods leave traces andcanberestored,and Deep Learning-based methods havedificultyin balancing privacyprotectionand image usability,afacial privacyprotectionalgorithmbasedonthegenerativeDifusionModelisproposed.Adynamicfeaturegated mechanism is introduced,and Gated Convolution is used to adaptively mask the key privacyareas.An Eficient Channel AttentionGatedConvolutionblock isproposedtoimprovethefeatureextractionabilityandaresidualstructureisintroducedto acceleratetheconvergenceofthemodel.ExperimentsshowthatcomparedwiththerDeepLearning-basedmethods,thismethod achieves beterresults intermsofboth privacyprotectionand imageusabilityindicators.Therefore,the proposed facial image privacy protection algorithm based on the generative Diffusion Modelis effective and more advantageous.

KeyWords:DiffusionModel; Gated Convolution;EficientChannelAttention Mechanism; facial privacy protection

0 引言

随着信息技术的飞速发展,各种类型数据的规模呈现指数级增长,而其中的隐私问题也随之日益凸显并引起关注。(剩余13351字)

目录
monitor
客服机器人