集成学习动态融合的贷款客户失联模式分类与鲁棒优化

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP181;F830.49 文献标识码:A 文章编号:2096-4706(2025)17-0110-05

Abstract:Inorder to metthe precise needsoffinancial institutions fortherisk preventionandcontrolofloancustomers' lossofcontact,anensemble learning framework basedondynamic weightfusionisproposed.The framework integrates the advantagesofXGBoost,LightGBMandAdaBoost models,verifiesitsrobustness throughdual stresstestsofoise injection andfeaturelossandanalyzes thedecisionlogicwiththefeatureinterpretabilitymethod.Theexperimentalresultsshowthatthe comprehensiveFl score of the dynamic fusion model is 96.5% ,whichis 1.2% higher than that of the single optimal model.In the noise interference and feature loss scenarios, the F1 score attenuation rates are only 0.83% and 14.79% ,respectively,and thestabilityissignificantlybeterthanthetraditional methodAmongthem,thecontributionofcorefeaturessuchas“overdue amount” and “registered address” to classification decision-making is more than 70% .Through multi-model collaborative optimization,themodelefectively improvestheclasificationaccuacyandanti-interferenceabilityprovides keytechical supportforfancialistitutions tobuildahghlyrobustriskcontrolsystem,andhelpsthedeepintegrationoffinancialdigital transformation and systemic risk prevention and control.

Keywords: uncontactable loan customer; ensemble learning; dynamic weight fusion; robustness evaluation; feature interpretability; financial technology

0 引言

在双循环发展格局与金融数字化转型加速的大背景下,金融行业正经历深刻变革[1。(剩余8449字)

目录
monitor
客服机器人