基于Retinex理论和生成对抗网络的低照度图像增强算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2025)17-0058-04

Abstract:Aimingattheproblemsof insufficient brightness,noiseinterferenceanddetaillossof images inlow-light environment,this paper proposesalow-lightimageenhancementalgorithmbasedonRetinex theoryand GenerativeAdversarial Network (GAN).The generatorof the algorithmconsistsofadecomposition network,an ilumination adjustment network and noisereductionblock.Firstly,thelow-lightimageisdecoupledintotheillminationcomponentandthereflectioncomponent bythedcompositionnetwork.Secondly,thebrightnessisorrectedbytheillminationadjustmentnetworkandthedetails areoptimizedbythenoisereductionblock.Finallyimagereconstructionisealizedbycomponentrecombination.Inadition, the algorithmalso introduces SEatention blockanddenseconnection block toenhance the feature propagationability.The experimentalresultsshowthatthealgorithmhasadvantages ineliminatingnoiseinterference,maintaining texturedetailsand improving multi-scene illumination adaptability.

Keywords: low-light image enhancement; Retinex theory; GAN; SE attention block; dense connection block

0 引言

在计算机视觉、数字摄影和安防监控等领域,图像质量直接影响后续任务的性能。(剩余6729字)

试读结束

目录
monitor
客服机器人