基于惩罚策略的条件深伪模型对抗攻击方法

打开文本图片集
中图分类号:TP309.2;TP391.4 文献标识码:A 文章编号:2096-4706(2025)17-0068-05
Abstract: Inorder to effctively interfere with the modifcation of images by the deepfake model, this paper proposes a methodtocounteracttheatackofthedeepfake modelbymaking imageadversarialsamples.Firstly,theindexforadversarial atack conditional deepfakemodel isreevaluated,andtheproportionofadversarialsamplesthatmaketheoutputdistortioreach thethreshold(atacksuccsrate)isproposed,whichismorepracticaltantheaveragesizeoftheoutputdstortionquantation value.Secondlyaimingattheunreasonabledesignofthebaseline method,theadversarialsamplegenerationalgorithtakes maximizing theexpectedvalueofthelossfunctiontotheconditionalvariableas theoptimizationgoal,andproposesamethod basedonthepenaltystrategytomodifytheloss function,sothat thealgorithm takes maximizingthe proportionofthe loss functionreachingthetresholdastheoptimizationgoal,therebyimprovingthesucessateoftheadversarialatack.Finally,te optimal hyperparametersoftheproposed improved methodareexploredbycombating the twomainstreamconditionaldeepfake models,andthecomparativeexperimentsarecariedout withthestandardmethod.Theresultsshowthat thepenaltystrategycan significantly improve the success rate of adversarial attacks.
Keywords: adversarial sample; deepfake; penalty strategy; attack success rate
0 引言
利用生成对抗网络(GAN)[构建的图像生成模型,推动深度伪造技术实现了飞速发展。(剩余8251字)