基于物理信息同步学习的高频传输线电压预测研究

打开文本图片集
中图分类号:TP391 文献标识码:A 文章编号:2096-4706(2025)17-0022-06
Abstract: High-frequency transmissonlines play a vital role in power systems and are widely used in the propagation andinteractionofelectromagneticwaves.Therefore,acuratepredictionoftheirvoltageisofgreatsignificanceforinformation acquisition.Howee,existingnumeicalthodsavecertainlitationsincomputatioaliencyTotisend,theoltage predictionmethodofhigh-frequencytransmisionlinesisstudied,andamethodbasedonPhysicallyInformedSynchronous Learning (PISL)isproposed.FirstlyaNeuralNetwork forpredictingvoltageisonstructed,anditrandomlysamples tobtain the spars trainingdatasetandcolocationpointsetwithout labels.Secondly,adata-physics informationhybridloss function is constructedtotrainthenetwork,whichconsidersdatalossandphysics-informedlosssythetically.Finallytheearson corelationcoeffcientandRootMean SquareErrorareusedas evaluationcriteria toverifytheeffectivenessof the proposed method through experiments.Meanwhile,a comparativesensitivityanalysisof therelevant network parameters isappliedto verify the effectiveness and robustness of the method.
Keywords:data-physics information hybridloss function; Physicaly Informed Synchronous Learing; voltage prediction; Neural Network
0 引言
电力系统是支撑社会运作的关键基础设施,也是推动经济和科技发展的核心动力。(剩余7098字)