基于物理信息同步学习的高频传输线电压预测研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391 文献标识码:A 文章编号:2096-4706(2025)17-0022-06

Abstract: High-frequency transmissonlines play a vital role in power systems and are widely used in the propagation andinteractionofelectromagneticwaves.Therefore,acuratepredictionoftheirvoltageisofgreatsignificanceforinformation acquisition.Howee,existingnumeicalthodsavecertainlitationsincomputatioaliencyTotisend,theoltage predictionmethodofhigh-frequencytransmisionlinesisstudied,andamethodbasedonPhysicallyInformedSynchronous Learning (PISL)isproposed.FirstlyaNeuralNetwork forpredictingvoltageisonstructed,anditrandomlysamples tobtain the spars trainingdatasetandcolocationpointsetwithout labels.Secondly,adata-physics informationhybridloss function is constructedtotrainthenetwork,whichconsidersdatalossandphysics-informedlosssythetically.Finallytheearson corelationcoeffcientandRootMean SquareErrorareusedas evaluationcriteria toverifytheeffectivenessof the proposed method through experiments.Meanwhile,a comparativesensitivityanalysisof therelevant network parameters isappliedto verify the effectiveness and robustness of the method.

Keywords:data-physics information hybridloss function; Physicaly Informed Synchronous Learing; voltage prediction; Neural Network

0 引言

电力系统是支撑社会运作的关键基础设施,也是推动经济和科技发展的核心动力。(剩余7098字)

目录
monitor
客服机器人