基于多层感知器神经网络的单频观测伪距精度优化研究

打开文本图片集
中图分类号:TP273;TP242 文献标识码:A 文章编号:2096-4706(2025)17-0038-07
Abstract:Aimingat the problem that the positioningaccuracyof single-frequency receiveris limited dueto ionospheric delay,the Multi-Layer Perceptron (MLP)neural network isused to predicttheionospheric delay to improve the pseudo-range accuracyof single-frequency observation.Theobservation dataand broadcast ephemeris files ofIGS data centerof Wuhan Universityarecoected,andtheMPneuralnetworkmodelisonstructedafterpreprocessingThemodeltakes thepsedrange ofsingle-frequencyobservationanditsrelatedcharacteristicsasinput,andtheionosphericdelaycorrctedbytheobseation data ofthedual-frequencyreceiveras thepredictiontarget.Theexperimentalresultsshowthat he averagepredictionaccuracyof the model on the test set is 81.71% ,which is significantly beter than the traditional Klobuchar model (the average compensation accuracy is about 50%~60% )
Keywords: single-frequency observed pseudo-range;Multi-Layer Perceptron neural network; ionospheric delay; Klobuchar model; accuracy optimization
0 引言
在GPS定位技术中,伪距观测精度对定位结果的准确度起着关键作用。(剩余11225字)