融合BKA优化的CNN-LSTM模型在地面物流碳排放预测中的应用

打开文本图片集
中图分类号:TP391;TP181 文献标识码:A 文章编号:2096-4706(2025)17-0078-05
Abstract:Inorder tosolvetheproblemsofstrongdata volatilitysignificant nonlinearityandcomplex time dependence inthe predictionofcarbon emissons from ground logistics,this paper proposes a CNN-LSTMdeepprediction model based onBlack-winged KiteOptimizationAlgorithm(BKA).Themodeluses ConvolutionalNeural Network(CNN) toextractlocal features,employsLong Short-Term Memory (LSTM)tomodel temporal dependencies,andutilizesBKAtoautomatically optimize keyhyperparameters.The experimenttakes thedailycarbonemisiondataofChina's groundlogistics in2024as the researchobject,constructsaslidingwindowtimeseriessample,andcariesoutmodeltrainingandtesting.Theresultsshowthat theproposed modelissuperior totheunoptimized model inMAE,MSE,RMSEandother indicators,andhas highprediction accuracyand stability.This method providesafeasible path forthe inteligent predictionofcarbonemissions from ground logistics,andalsoshowstheapplicationvalueofintellgentoptimizationalgorithminparametertuningofDepLeamingmodel.
(eywords: ground logistics; carbon emission prediction;BKA; CNN-LSTM
0 引言
气候变化已成为全球性重大挑战。(剩余6705字)