基于特征挖掘与跨层互补学习的花卉图像分类

打开文本图片集
中图分类号:TP391.4;TP181 文献标识码:A文章编号:2096-4706(2025)17-0052-06
Abstract:Flowerimageclasifcationisdevoted toidentifyingfowercategorieswithsubtlediferencesbetweenclasses andsignificantdiferenceswithinclasses.Thekeyishowtoextractstrongdiscriminantfeaturesfromhighlysimilarcategories. At present, mostof the mainstream methods use attention-based region localization methods,but these methods face two keylimitations:oneistofocus toomuchonafewsignificantregions,resultingintheneglectofpotentialkeydiscriminant regions;thesecondisthelackof modelingoffeaturecomplementarityresultinginsemanticredundancyoflocalfeatures.In viewof the aboveproblems,this paper proposes afower imageclasification method basedonfeature miningandcros-layer complementaryleaing.Firstly,afeature miningmoduleisdesignedtoforce thenetwork toexplorenewdiscriminantfeatures bystrengtheningthemostsignificantfeaturesandthensuppresing them.Secondly,cross-layerfeaturecomplementaryleaing moduleisconstructed,ndcross-layer interactionmechanismisusedtofusemulti-featurecomplementarysmantics toance discriminant features.Theexperimentalresults show that the method performs wellonthe OxfordFlowers102 dataset.
Keywords: multi-layer feature; feature enhancement; feature complementarity;flower image classification
0 引言
在计算机视觉领域,花卉图像分类是一项具有挑战性的识别任务,其核心在于区分外观相似、类别间差异细微的花卉子类[1]。(剩余10944字)