融合改进K-SMOTE与LightGBM算法的故障检测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP18;P756.1 文献标识码:A 文章编号:2096-4706(2025)15-0174-05

Fault Detection Method Integrating Improved K-SMOTE and LightGBM Algorithm

BAOJiali

(SchoolofBigDataandArtificial Intelligence,ChengduTechnological University,Chengdu61173o,China)

Abstract: To addressthe issues of weak model generalization and insuffcient recognition accuracy for minority-class faultsausedbylass-imbalanceddatainidustrialfultdetection,tispaperproposaclasificationframewrktatintegates clustering optimizationand EnsembleLeaming,aiming to improve therobustness and acuracyof multi-classfault detection. It adoptsanimprovedSMOTEalgorithmbasedonK-meansclustering,nhances thedistributionrationalityofminority-clas samples through intra-clustersample interpolationstrategies,dynamicallydividesbalanceddatasetscombined withrandomized K-foldcros-validatonndconstructsanintegratedclasificaionmodeltraedbytheLightGBMalgorithm.Expeentson the UCI steelplate defectdataset showthatthe proposed methodachievesanaccuracyprecision,andrecallof093,0.920,and 0.920,respectively,significantlyoutperforming modelssuch asRandomForest andMLP.TheAUCvalues ofROCcurves forall categoriesarehigherthanO.98,withthehighestreaching1.0o,verifingitshighdiscrminativeabilityforcomplexfaultpatts.

Keywords: industrial fault diagnosis;K-SMOTE algorithm; LightGBM

0 引言

工业设备的智能化故障诊断是保障现代制造业安全运行、降低维护成本的核心技术之一。(剩余7568字)

目录
monitor
客服机器人