一种面向在线交易场景的序列推荐方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.3;TP181 文献标识码:A 文章编号:2096-4706(2025)15-0087-08

Abstract:The sequence recommendation system based on online transaction scenarios aims to predict the next item that users maybe interested inbasedontheusers existingaccesshistory,andhasbecomean indispensable partofmajoraplication malls.However,themainprobemfacedbycurentresearchinthisfeldisthatthesaleoftheorigialdatasetisisuficent, which makesthemodelunable tobeeectivelylearedanditisdificult toaccuratelymineuserintentions.Tothisend,a sequence recommendationmethodbasedonMultipleEnhanced Contrast (MEC)frameworkis proposed.This method integrates the idea ofContrastive Learning.Firstly,theoriginal data is enhancedbyvarious typesof datato generatealarge amountof simulationdata.Secondly,theself-supervisedsignalofsmilarityrepresentationbetweensimulationdataisstablished.Finaly theMECmodeliscombinedwiththepairwiseranking lossforlearning.Extensiveexperimentsontwopublicdatasetsshowthat theproposedmethodhassignificantlyimprovedsequencerecommendationperformance inonlinetransactionscenarioscompared with the current baseline method.

Keywords:sequence recommendation; data augmentation; MEC framework; self-supervision; Contrastive Learing

0 引言

随着移动应用和服务人群数量的激增,为了避免信息过载,更好地服务于各类用户,序列推荐系统作为机器学习领域的新宠引发了研究人员的广泛关注[1-3]。(剩余13532字)

目录
monitor
客服机器人