基于K-means算法和遗传算法两阶段融合模型的物流配送线路优化

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP18;TP39 文献标识码:A 文章编号:2096-4706(2025)15-0168-07

Abstract: Inorder toachieve the goalofcostcontrolandeficiency enhancement in cigarette logistics distribution,this paper combines K-means algorithm with Genetic Algorithm,and constructs alogistics distribution route optimization model basedonbusinesconstraints.Basedonthenationalsalesdataof independentbrandcigarettes in2O23,according tothelatitude andlongitudeofthereceivingcityK-meansclusteringalgorithmisusedforclusteringoperation.Inorder tomettheactual business eedsandfurtherreduce thecostoflogisticsandtransportation,analgorithmtobalance thenumberofcitiesandtonkilometers isdesignedtore-optimizetheclusteringresults.Finaly,GeneticAlgorithmisusedtosolvetheshortestpath for clusteringresults.Theexample analysis shows thatthecalculationresultsof themodel are basicallyconsistent withthe actual line.Compared withthe traditionalmanualrouteplaning method,thecumbersomeprocessissimplifedandthe trasportation eficiencyisimproved.The modelcanprovideapowerfulreferencefortransportationroute planning,andcanquicklyplan transportation routes to help achieve cost control and effciency improvement ofcigarete logistics distribution.

Keywords: K-means algorithm; balancing ton-kilometer; Genetic Algorithm; distribution route optimization; cost control and efficiency enhancement

0 引言

近些年随着卷烟工商交易逐步实行“按订单组织货源”模式,市场需求分散,小批量、多频次订单逐渐成为新常态,导致物流成本不断增加。(剩余8563字)

目录
monitor
客服机器人