基于注意力机制的肝癌基因表达识别

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP183;TP391 文献标识码:A 文章编号:2096-4706(2025)15-0043-05

Abstract: Hepatocellular carcinoma is a type cancer with high morbidity mortality in , which brings a heavy diseaseburden tothe society.Inrecent years,withthein-depthdevelopmentaplicationDeepLearning technologysome algorithms basedonDepLeamingto predict gene expressionusing generegulatory factors have beenproposed.However, there is stillmuchroomforimprovement intheaccuracythealgorithmforpredictingtheup-regulationdown-regulationgene expressionbyhistone modificationinhepatocelularcarcinoma.Inthispaper,aDepLearningalgorithmmodelACRChrome is proposed,whichcanpredictthechangesgeneexpressionbyusingthediferencehistone modificationsignalsbetween hepatocellularcareomacellinesndnoallivercelli.ItusesSelf-AtentonMechasm,To-DimesioalConvolioal Neural Network (2D-CNN)residualconnection toobtain feature importance fromdata,capture data depth features aleviate thevanishinggradient problem.TheresultsshowthatteaverageAUC,averageprecision,averagesensitivityverage specificityaverageF-scoreaverage accuacyCRChromerepeatedtraining for5timesare0.885,0.833,0.8,0.71, 0.843 0.803,respectively.Afterrepeated trainingfor15 times,the AUC index ACRChrome is significantly improved compared withthe same type advanced model,indicating that the model can effectively predict gene expression.

KeyWords:hepatocelllarcarcinoma;histone modification;Self-Attention Mechanism;2D-CNN;residualconection

0 引言

肝癌是一种发生在肝脏的恶性肿瘤,可分为原发性和继发性两大类。(剩余9379字)

目录
monitor
客服机器人