基于混合深度学习架构的Web注入检测方法研究与实现

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP393.0;TP183 文献标识码:A 文章编号:2096-4706(2025)15-0072-06

Research and Implementation of Web Injection Detection Method Based on Hybrid Deep Learning Architecture

YUZhenyang,LIUYuanxia (GuangdongPolytechnic of Scienceand Technology,Zhuhai519o9o,China)

Abstract: Withthecontinuous increaseof network securitythreats,Webinjectionatacks have become oneof thecommon means ofattck.Traditional Web injectiondetectionmethods generallyhave problems suchasporadaptabilitydependenceon handerafted features,anddificultyindealingwithencryptionconfusionatacks.Therefore,thispaper proposesa Webinjection detection model based on hybrid Deep Learning architecture,which combines Convolutional Neural Network (CNN)and Long Short-Term Memory(LSTM)network toimprove thedetectionauracyofSQLinjection,XsSandotherattacks.The experiment iscarriedoutonthepublicdataset.Thismethodfrst efectivelyfiltersoutnoisedata throughmulti-levelcleaning, then combines TF-IDFvectorization(n-gramrange1~3)torepresent thedata,anduses CNN to extractlocal featuresandLSTM to modeltemporal dependencies toconstruct ahybrid neural networkstructure.Theexperimentalresultsshowthat themethod has high detection accuracy,which verifies its effectiveness and practicability.

Keywords:Web injection attack detection; Deep Learning; CNN;LSTM;AUC

0 引言

OWASP(开放式Web应用程序安全项目)定期发布针对Web应用的十种主要攻击手段(10大漏洞安全列表),该报告总结了Web应用最容易受到的攻击方式,可以有效帮助IT公司和IT开发团队进行针对性的防范和测试,进而提高Web应用产品的安全性[。(剩余9126字)

目录
monitor
客服机器人