融合信息增强和兴趣演化的个性化推荐

打开文本图片集
中图分类号:TP391 文献标识码:A 文章编号:2096-4706(2025)15-0122-07
Personalized Recommendation Integrating Information Enhancement and InterestEvolution
LIANG Songyang, YANG Zexin (GuangdongUniversityofPetrochemical Technology,Maoming 525ooo,China)
Abstract: The sequence prediction models canefectivelycapture dynamic changes inuser behaviors,and can provide more personalized predictions forrecommendation systems.However,existingmodels focus onmodelconstructionandoverlook the isueof dataimbalance.DpInterestEvolutionNetwork with InformationEnhancement IE-DEN)isdesigned forthis purpose, andthe modelintegrates informationenhancementmethodsbasedontheDENarchitecture.Specificaly,theoperationistocreate anembedding vectorforeachuserandcalculatethe Hadamard product withthesequence samples toupdate the spatial distance between thesamples.The enhanced samples are inputito structures such as interest extraction layers,whichcan beregarded as hyperplaeclassfcationmodels topredictuserinterestpreferences.Theexperimentsshowthat IE-DIENimprovesAUCandMCC indicatorsby more than 5% onboth datasets.Especially, it performs better on datasetswith imbalanced data.
Keywords: sequence prediction; information enhancement; interest evolution; data imbalance
0 引言
基于序列预测的推荐模型(RecommendationModel Based on Sequence Prediction,RM-SP)是一种利用用户历史行为序列数据,预测用户未来可能的兴趣或行为倾向的算法模型。(剩余9850字)