一种时空融合自适应低通多图卷积神经网络

打开文本图片集
关键词:交通流量预测;图卷积神经网络;深度学习;智慧城市;性能提升中图分类号: 文献标志码:A 文章编号:2095-2945(2025)30-0050-05
Abstract:Thispaperproposesaspatiotemporal fusionadaptivelow-passmulti-graphconvolutionalnetwork (STFALMGCN) fortraffcflowprediction.First,weproposeacausalgating linearunitmoduletoextractthetemporalcharacteristicsof trffic flow,usecausalconvolutiontogreatlyreducethetrainingparameters,andthegatinglinearunitspedsupthetrainingspeed. Secondly,adynamicallylearmedadaptiveadjacencymatrixisconstructedusingmultipleinformationandbasedonthespatial informationgivenbythegraphstructuretobuildaspatialgraph,andglobalinformationandhideninformationarefulyutilized tofindtheoptimalcorelationgraph.Finalltemporalandspatialfeauresareintegratedtofurtherimprovepredictionaccuracy. Experimentswereconductedontworeal-worlddatasets,andtheexperimentalresultsshowedthatourmodelperformedbeter prediction accuracy.
Keywords:traffcflow prediction;graph convolutional neural network;dep learning;smart city;performance improvement
近年来,交通网络通常表现为非欧几里得空间,而卷积操作在欧几里得空间中取得了显著效果,因此,针对非欧几里得空间的卷积技术应运而生,图卷积神经网络便是其中之一。(剩余5402字)