基于多模态特征融合的米氏常数预测模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:R318.04 文献标志码:A 文章编号:2095-2945(2025)30-0028-05

Abstract:Michaellanconstantisakeyparameterinenzyekineticsandreflectstheafinitybetweenenzymeandsubstrate. Accuratelypredictingthisvalueiscrucialforreshapingthemetabolicnetwork,whichprovidesthebasisfordesigningand optimizingcellfactories.However,mostcurentdeeplearningmodelsdonotfullyminethestructuralinformationofproteinsand fail tomakefulluseofthesequenceinformationandstructuralinformationofenzymesandsubstrates,thusaccuratelypredicting Michaelisconstantsisstillchalenging.Tsolvethisproblem,anewdeeplearningmodelisproposedthatintegratesmultiodal information,includingproteinsequences,proteinmaps,substrate SMILESstringsandmolecularmaps,andusesaconvolutional atentionmoduleforfeaturefusion.Theresultsshowthatthemodelcombiningmultimodalinformationissuperiortoexisting methods and isa powerful tool for predicting the kinetic parameters of enzymatic reactions.

Keywords:biocatalysis;biological processes;synthetic biology;deep learning;neural network;Michaelisconstant

酶是精确控制代谢途径通量的关键催化剂,酶动力学参数在代谢网络的重构中发挥着核心作用。(剩余10706字)

目录
monitor
客服机器人