通道-空间多尺度增强与双池化注意的表情识别网络

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:人脸表情识别;多尺度增强;双池化注意;通道-空间多尺度结构;高效通道-空间注意力机制中图分类号:TP391.4 文献标志码:A 文章编号:1001-3695(2025)10-037-3182-10doi:10.19734/j. issn.1001-3695.2024.12.0524

Expression recognition network of channel-spatial multi-scale enhancement and dual-pooling attention

Liu Juan1†,Zhang Minyang1, HuMin2 ,Huang Zhong1,²,Jiang Julang1 (1.Schoolofon&elintcurinngalUsitn; KeyLaboratorffCuindcdelllfeecfaneUi of Technology,Hefei ,China)

Abstract:Aimingat theproblems that expressionfeature extractioninnatural scenesonlyfocusesonchannel-spatial singlescale information and average poling iseasytolose local saliencysemantics,this paper proposed an expresion recognition networkofchanel-spatialmulti-scaleenhancementanddual-polingattention.Firstly,tocapturethewholechannel-spatial multi-scale enhancement semantics,thispaperdesignedachannelsymmetriccascademulti-scale moduleandaspatialmultiscalefeatureextraction module,andconstructeda wholefeatureenhancementsubnetwork basedonthechannel-spatial multiscalestructure.Then,toepresentthechannel-spatialregiondual-poolingsalientsemantics,thispaperimprovedtheeficient localattentionmechanismitoaneficientchanel-spatialatetionmechanismandmbeddeditintotheregionfeatureaen tionsubnetwork.Finally,toobtainthepotentialcorelationbetweenthewholemulti-saleenancedsemanticsandtheregional dual-polingsalientsemantics,thispaperusedthecross-atentionmechanismtoperformthefeatureinteractionbetweenthe wholefeaturesandtheregionalfeatures,anddesignedthefeaturefusionsubnetworktocompletethemodel-levelfusionofthetwo typesoffeatures.TheexperimentalresultsshowthattheexpresionrecognitionratesonthefacialexpresiondatasetsRAF-DB and FERPlus reach 89.97% and 90.26% respectively,which are 13.54 and 10.95 percentage points higher than the baseline network.Compared withother networks,the proposed network hasbeter expressionrecognitionperformance innatural scenes.

KeyWords:facialexpressionrecognition;multi-scaleenhancement;dual-poolingatention;channel-spatialmulti-scale structure;efficientchannel-spatialattentionmechanism

0 引言

面部表情是传达人类情感最有效方法和手段之一,在远程教育、人机交互、医疗诊断和辅助驾驶等自然场景中受到广泛关注[1,2]。(剩余22523字)

目录
monitor
客服机器人