基于环境识别策略的多目标自适应粒子群算法及应用

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:粒子群算法;进化计算;自适应学习;多目标优化;多阶段生产问题中图分类号:TP301.6 文献标志码:A 文章编号:1001-3695(2025)10-011-2980-09doi:10.19734/j.issn.1001-3695.2025.04.0090

Multi-objective adaptive particle swarm optimization algorithm with environment recognition and application

Wu Baotongla,1b,ShuRuoqi2a,2b,Chen Zhixiangla,bt (1.a.Schoolfsinss,bbatorfigatDngentaioDecsionking,unYatnUniesityuo 51006,Cina2oofteligentafcuing,bZoingCieyLboratorofAdacedufacingo&p ment,Guangdong TechnologyCollege,ZhaoqingGuangdong5261oO,China)

Abstract:Toaddress theissuesofthestandardmulti-objectiveparticleswarmoptimizationalgorithm,suchasgetingtrapped inlocal optima,overlyfastconvergence,and low precisionduring theoptimizationprocess,thispaper proposeda multiobjectiveadaptiveparticleswarmalgorithm basedonenvironmental recognition.Theinitialpopulation wasgeneratedusing an optimalpointsetstrategytoensure individualsareuniformlydistributedinthesolutionspace.Itemployedanonlinearinertia weightmechanismandacrossver mutation strategytopreventthealgorithmfromconverging tooquicklyduring thesearch process.Aditionally,itintroducedanadaptivelearningoperatorandanadaptivejumpcolaborationoperatorbasedonenvironmentalrecognition,which facilitateinteractionandlearningamong particlesbyself-identifying thediversitylevelofthe population inthe solution spaceand thecrowdingdegree within the particle'slocal niche.Comparativesimulation experments onmultiplebenchmark functionsshowthattheimprovedalgorithmsignificantlyenhancesbothsearchcapabilityandoptimizationprecision.Finall,apractical multi-stageproductioncase withNP-hardvalidatestheefectiveness of algorithm.

Keywords:particleswarmalgorithm;evolutionarycomputation;adaptive learning;multi-objectiveoptimization;multi-stage production problem

0 引言

多目标优化问题是现代工程与科学领域中的核心挑战之二[1],其目标是在多个相互冲突的优化目标之间寻找最优解,且该问题广泛存在于生产、交通以及能源[2]等领域内。(剩余20647字)

目录
monitor
客服机器人