深度学习小目标检测算法综述

打开文本图片集
关键词:小目标检测;多尺度特征融合;注意力机制;样本均衡;轻量级网络;鲁棒性中图分类号:TP301.6 文献标志码:A 文章编号:1001-3695(2025)10-002-2893-12doi:10.19734/j. issn.1001-3695.2025.03.0067
Survey on deep learning-based small object detection algorithms
Zhang Qin 1,2 ,Guo Weian2+ (1.Collegefoc,n;dU versity,Shanghai201804,China)
Abstract:Smallobjectdetectionisanimportantbranchofobject detection,playingacriticalroleinapplications suchas intellgent surveillance,autonomous driving,medicalimage analysis,andremotesensing.However,duetothesmallpielpro portionof targets,weak featurerepresentationcomplexbackgrounds,andthetrade-offbetweendetectionaccracyandpeed, significanttechnicalchalengesremain.Basedonanextensiveliteraturereview,thispaperoutlinedthetechnicalchalenges andsolutionsforsmallobjectdetection,analyzedtecoreisuessuchasinsuicientfeaturerepresentation,inadequateuilizationofcontextualinformation,andsampleimbalance.Itsummarizedkeyadvances,including multi-scalefeaturefusion,attention mechanisms,andknowledgedistllation.Using MS COCOand TinyPerson datasets,this papercompared thedetection eficiencyandaccuracyofmainstreamalgorithms,highlightingthestrengthsandweaknessesofdiferentmethods.Furthermore,it exploredthfutureresearchdirections,suchas generativefeaturelearning,self-supervised learning,anddyamicarchitecture design,to provide insights for the further development of small object detection technologies.
Key words:smallobjectdetection;multi-scale feature fusion;attentionmechanism;samplebalance;lightweightnetwork; robustness
0 引言
小目标检测是目标检测领域的重要分支,近年来随着深度学习技术的迅速发展,已成为计算机视觉研究中的热点问题。(剩余40167字)